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Abstract 
The article is based on a research in which the primary aim of the study had been to find empirical 

justification for seven crucial challenges that could be considered simultaneously within instrumental 

orchestration [1]. The results of the data synthesis suggested that a quasi-systematic framework to 

promote links between conceptual and procedural knowledge may be crucial when planning the 

problems of students’ own investigation processes, whereby an innate way to utilize technology is to 

proceed in a more or less non-systematic way at the level of instrumentalisation (i.e. knowledge 

construction means bi-directional actions between the person and the tool). As students’ freedom to 

choose learning objectives and working methods appeared in a most natural way in collaboration 

between students or student teams, the research process offered a journey to take a critical position on 

the term ‘student-centred’, being characterized in a more or less “loose and grey” way in the literature. 

The synthesis reveals that Neuman’s [2] triple-step contexts for defying “student-centred learning” 

should extended by the paradigm between student teams. Thus, rather than trying to be written as a 

rigid research report, this article describes this journey in a way that hopefully portrays the complexity 

of the field and emphasizes the challenge to consider several components simultaneously. Implications 

for teacher education and school culture are discussed briefly. 

 

1. Introduction  
 

1.1. Researchers’ efforts to characterize the term SCL   
The term Student-centred Learning (SCL) has turned out to be a complicated and messy concept 

(see [3]). Beyond the efforts to define it as the opposite of teacher-centred learning ([4], [5], [6], [7], 

[8]), it seems to appear repeatedly as “loose” attributes as ‘active learning’, ‘choice in learning’, 

‘self-guidance’, ‘autonomy’, and ‘collaboration’ (cf. [9], [10], [11], [12], [13]). According to [14], 

cooperative work is accomplished by dividing the labour among participants as an activity in which 

each person is responsible for a portion of the problem solving, whereas collaboration involves the 

mutual engagement of participants in a coordinated effort to solve the problem together. Self-

guidance means that learners participate in guiding and planning their own learning, like defining 

homework [15]. These elements improve the learner’s intrinsic motivation toward learning and can 

be seen to create better learning results. Many researchers have reported that the feeling of self-

guidance improves learners’ meta-cognitive skills and ability to evaluate their own work ([16], [17], 

[18]). In contrast, the teacher-centred, well-controlled approach decreases learners’ intrinsic 

motivation towards and involvement in working [19]. The term “self-guidance” refers to similar 

processes as the concept of self-regulated learning (cf. [20], [11]) promoting an opportunity to 

consider the process phases (preparatory, performance and appraisal) with different emphasis [21]. 

It seems natural to require that student-centred approaches should allow the students at least 

a certain level of cooperation and even collaboration and to make their own decisions regarding 

their own learning (cf. [22]). Zain, Rasidi and Abidin [23] suggest that this shifts the students from 

being less passive receivers of knowledge to being more responsive, and able to relate to their 

experiences. Students’ learning skills are demonstrated through their heightened interaction and 

cooperation (in and outside the classroom), better planning of the lesson and students’ learning, 
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with some elements of analytic skills being portrayed. Many studies also highlight aspects of 

curriculum design and assessment: there is a gap between what students expected in their learning 

and what teachers have taught them. Saragih & Napitupulu [24] report on the impact of the positive 

effect on students' higher order skills and communication, whilst Noyes [25] and Calder [9] suggest 

that the nature of scaffolding might differ from that experienced in traditional classroom situations. 

This is in accord with widely used demands to emphasize student preparation for college and 

careers with relevant and flexible knowledge, as learning can happen at any time and anywhere (see 

[26]). Overall, the following quotation from Swan [27] might serve as a summary of the 

characterizations found for SCL, especially in mathematics:  
“the teacher takes students’ needs into account when deciding what to teach, treats students as 

individuals rather than a homogeneous body, is selective and flexible about what is covered and allows 

students to make decisions, compare different approaches and create their own methods. Instead when 

using teacher-centred practices, the teacher directs the work, pre-digests and organizes the material, 

gives clearly prescribed instructions, teaches everyone at once in a predetermined manner and 

emphasizes practice for fluency over discussion for meaning.”  

By extending Neuman’s three-step paradigm (on, in, and with) [2], we will extract ourselves 

from this position in the conclusion of our study, not the least because we doubt whether mathematical 

knowledge can be constructed by an individual in an optimal way by solving more or less closed tasks 

that someone else has posed in a well-defined and well-organized mathematical content. Even the 

very basic feature of constructivism requires the teacher to utilize dialectic problem posing (see [28]), 

which acts as a form of vaccination against negative emotions.  

By making synthesis from the results of the previous research [1] we will pose in this article 

a research question: (Q) What kind of demands could be set for the student centred learning 

environments (SCLE). To do this end we need to look for closer and widely the theoretical aspects 

concerning learning, learning environments, and mathematics as a subject to be study, and its 

specialties concerning knowledge and learning solutions (Section 2). Furthermore, we will promote 

our findings from the ClassPad project [1] that are reflecting the presented theoretical network 

(Section 3). Finally, we are ready for presents our synthesis concerning SCLE on Section 4. 
 

2. Background 

2. 1.  Challenges caused by the complexity of the field  

To begin to reappraise the term ‘student-centred learning’, the first requirement was to take a critical 

look at the use of the term “learning”, which in itself is always essentially “student-centred”. It seems 

strange even to suggest that someone is learning on behalf of another person, and for example, it 

might be more appropriate to speak about “student-centred teaching” (cf. [25]), “student-centred 

instruction” (cf. [47]), or “student-centred learning environments” (SCLE).  

To replace these loose characterizations, we need grounding on sustainable and viable 

frameworks for instructional praxis. Because of the complexity of the field (cf. [48]) we had to 

withdraw from the tradition of focusing on a single factor or on a few partial factors of mathematical 

instruction at a time. We have adopted the views of [49] and [50]) that the following seven challenges 

of instrumental orchestration should be considered more or less simultaneously: 

1. Promoting collaborative social constructions; 

2. Linking of conceptual and procedural knowledge;  

3. Solving the dilemma between a systematic approach and minimalist instruction;  

4. Relating instructional design and assessment to instrumental genesis;  

5. Promoting learning by design;  

6. Revitalizing sustainable heuristics in human history; and 

7. Applying business principles to overcome the bad reputation of mathematics. 

The matrix for SCLE to be represented in the Conclusions section (Table 4), for example, should 
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be understood as a general framework only. The analysis of each of the cells requires that the seven 

challenges of instrumental orchestration are more or less related to each other. However, as it is 

impossible for this to be reported within the scope of this article, we represent the so-called ClassPad 

project from the viewpoint of those challenges in the sections that follow. Thus, instead of being a 

formally reported empirical study, this article may appear rather as a journey to Grounded Theory, 

finally leading to a reappraisal of SCL and SCLE. 

 

2.2. Promoting collaborative social constructions 

When considering the learning of mathematics within a constructivist paradigm, instead of speaking 

about ‘learning environments’, it might be more relevant to adopt the term investigation space, as 

used by Haapasalo &Samuels [51] whereby the learning is considered to be an investigation process 

– whether individual or collaborative - including both cognitive and psychological aspects. The term 

‘space’ accents that this process that is nowadays independent of time, place and formal modes and 

emphasizes students’ own freedom and control. To make an appropriate socio-constructivist 

grounding, we have adopted the well-known pragmatic theory of truth emphasized by the philosopher 

Charles Peirce. This theory is as valid for scientists as for learners because when an investigation 

space has been designed (an open dialectic problem is given; see [28]), the teams collaborate in causal 

interaction with this problem. After testing the viability of radical ideas within the teams and between 

the teams, only those ideas that are viable for the whole social group consisting of those teams (see 

Figure 1) still remain. The objectivity of knowledge is related to what the teacher and students see as 

necessary “to be able to cope” in the sense of von Glasersfeld [52]. We will apply this paradigm 

throughout our study and when reappraising SCLE in the conclusion. 

 
Figure 1. Viable knowledge as a result of radical social constructions (cf. [49]).  

 

2.3 Sustainable heuristic activities may be supported in new way 

To consider how mathematical knowledge and mathematical thinking enters the human mind and life 

and enables coping in the sense of Figure 2, it is appropriate to recognize which heuristic activities 

have been sustainable throughout human history. During his long-term study of the history of 

mathematics, Zimmermann ([53], [54]) identified eight main activities which have often led to 

mathematical innovations over different times and cultures for more than 5,000 years. We will 

henceforth refer to the Z-activities, represented in Figure 1.  
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Figure 2. Activities and thinking tools which proved to be successful in mathematics making [54]. 

 

The meta-study by Haapasalo and Hvorecky [55] gives a comprehensive evaluation of Z-activities 

based on well-established criteria for the quality of research in mathematics education (see [56]). 

They emphasize the significance, rigor, and both theoretical and pragmatic relevance of Z-activities, 

which can be linked to Bishop’s [57] comprehensive analysis of educational consequences from 

sociocultural perspective, as to his “concept-based components” counting, locating, measuring, 

designing, playing, and explaining. On the other hand, measuring, for example, comprises almost all 

the Z-activities and their linkages. 

When reflecting upon Z-activities from an educational point of view, it has been recognized 

in many empirical studies (cf. e.g. [58]) that they are just as important for today’s mathematics and 

science instruction, especially if the creative activities of pupils are stressed. The interconnections 

between these activities, represented in Figure 2, correspond to the general goal (of learning) to 

achieve a high degree of flexibility in thinking, and to foster connected, divergent thinking in addition 

to mastering routine activities. They are also in accord with the well-known attributes for expert-like 

working and thinking (see e.g. [59], [60]). 

To find out how Z-activities are supported, we developed a 5-step Likert scale instrument to 

measure the following three profiles: (1) Self-confidence: How strongly the student thinks he or she 

is performing each of the activities, (2) Maths profile: How strongly the student thinks mathematics 

teaching supports each of the activities, and (3) ICT profile: How strongly the student thinks the usage 

of ICT supports each of the activities - where ever and how ever he or she uses it  (see Figure 2). 

Later, the instrument was developed by representing each of the main activites as three sub-activities 

(see [61]). When measuring the three profles among prospective mathematics teachers and 

prospective elementary teachers, Haapasalo and Eskelinen [61] found that the only note-worthy 

support gained from mathematics teaching at school or university, seems to come for calculating. 

Surprisingly the support the students thought to have gained from their own usage of information and 

communication technology (ICT), when ever and how ever they used it, was even more modest. 

However, in the next section we provide an example of how students could utilize techology in their 

free time with well-tailored investigation tasks for the learning of mathematics in a way that extended 

all three aforementioned profiles.   

  

2.4 Shifting from instrumentation to instrumentalisation  

We have used the term instrumental genesis in a wide sense to mean the development of ICT together 

with its usage for acquisition of conceptual and procedural knowledge. It comprises two parallel 

components: instrumentation and instrumentalisation ([62], [63]). The former refers to a person’s 

ability to use a tool. It is directed towards an artefact and describes the process by which it becomes 

useful to the learner to accomplish specific purposes (that is, an instrument). The latter refers to the 

way a person uses a tool to shape the actions and the character of the knowledge constructed with the 
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tool. It is directed towards the learner and describes the process by which the opportunities and 

constraints of the artefact shape their conceptual understanding and procedural ability. 

Instrumentation and instrumentalisation often happen naturally in students’ free time as they tailor 

their smartphone and tablet apps in creative ways for their own purposes. This suggests that 

mathematical instruction should shift its focus from well-prepared classroom lessons to instrumental 

orchestration. We use this term, introduced by Trouche [64], to mean intentional and quasi-

systematic organization of available ICT tools within an appropriate paradigm of teaching and 

learning to promote students’ instrumental genesis. By using the term “quasi”, we emphasize two 

aspects from the teacher’s side: firstly, the need to plan the learning environments systemically, based 

on viable and sustainable theories of teaching and learning; and secondly, the need to accept the 

principle of minimalist instruction (see [65]) because the learning very often proceeds more or less 

spontaneously. The integrated environment of a computer algebra system (CAS) and a dynamic 

geometry (DGS), for example, allows casual playing between mathematical representations offering 

a powerful tool for problem solving and promotion of links between procedural and conceptual 

knowledge.  

Eronen and Haapasalo [66] report how students could utilize such technology in their free 

time with well-tailored investigation tasks in a way that extended their all three profiles mentioned 

earlier, even during a short period of working time. At the beginning of the so-called ClassPad 

Project, the unfamiliar calculator (https://edu.casio.com/products/cg/cp330plus/) was demonstrated 

briefly to a class of Year 8 students (N=15) to give them the opportunity to play with it voluntarily 

during their summer holiday with concepts of Year 9 mathematics (such as a linear functions). Their 

only requirement was to write a portfolio of reflective notes if they worked with the tool. The 

authentic sample shown in Figure 3 shows a sample, having been made at 1:42 a.m. during a working 

period of 75 minutes, continuing the next day when the student explained how the parameters affect 

the position and location of the line: 
 

• The equation is now y = 2x - 3.    

• When changing the equation to y = 2x – 5, the line moves forwards in the 

positive direction of the x-axis. 

• By changing the equation to y = 2x – 1, the line has gone in the same direction 

as before, but the distance is smaller.  

• I notice I solved the task in a strange way. I’m glad that I understood these cases 

and now my studying is going pretty well. 

 

Figure 3. An example of instrumentalisation with ClassPad (cf. [50]) 

 

This example contrasts with the common purely metacognitive abilities of students and teachers [67]. By 

manipulating the conceptual interpretation spontaneously, the student explained how the parameters affect 

the position and location of the line (procedural interpretation). Through instrumentalisation, she made 

her own interpretation against the standard view: the line moves along the horizontal axis. 
 

2.5 Promoting links between conceptual and procedural knowledge   

The characterization of these two knowledge types has been identified as a neglected area in 

mathematics education research — even though it is a key question in any pedagogy to ask whether 

the learner must understand before being able to do, or vice versa. This means solving the conflict 

between conceptual and procedural knowledge ([31], [32], [33], [34]), characterized according to 

Haapasalo and Kadijevich [68] as follows: 

• Procedural knowledge denotes dynamic and successful use of specific rules, algorithms or 

procedures within relevant representational forms. This usually requires not only knowledge 

of the objects being used, but also knowledge of the format and syntax required for the 

representational system(s) expressing them. 

https://edu.casio.com/products/cg/cp330plus/
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• Conceptual knowledge denotes knowledge of particular networks and a skilful “drive” along 

them. The elements of these networks can be concepts, rules (algorithms, procedures, etc.), 

and even problems (a solved problem may introduce a new concept or rule) given in various 

representational forms. 

Recalling their discussion about the importance of procedural knowledge in human constructions of 

meaning, investigation spaces should allow learners to start from their spontaneous procedural 

knowledge. However, procedural knowledge alone cannot predominate if we consider that the main 

goals of education are to promote skilful navigation in knowledge networks, and the ability to apply 

knowledge in new situations, requiring linkage between Z-activities. Research by Lauritzen [69] with 

economics undergraduate students (n = 476) reveals two crucial factors in acquiring and applying 

knowledge. First, procedural knowledge is necessary but not sufficient for conceptual knowledge; 

and second, to be able to apply what they know, students need conceptual knowledge. Combining 

these demands, we can conclude that the so-called developmental approach, based on a genetic view 

emphasizing procedural knowledge, needs to be combined with an educational approach, based on 

dynamic interaction and emphasizing conceptual knowledge (see [68]). Figure 4 represents a quasi-

systematic model for a sophisticated interplay of the two approaches. 
 

 
Figure 4. Interplay between developmental and educational approaches (cf. [49]). 

 

When planning a constructivist approach to the mathematical concepts under consideration, the focus 

is on the left-hand side when the students try to interpret a tailored problem situation based on more 

or less spontaneous procedural knowledge. On the other hand, when offering students opportunities 

to construct links between representation forms of a specific concept, the focus is on the right-hand 

box, in which the stages of mathematical concept building are illustrated. In learning situations, 

however, students must have freedom to choose the problems that they want to learn how to solve, 

accompanied by continuous self-evaluation instead of relying on the expressed guidance of teachers. 

The next Section includes an example to solve this dilemma. 
 

2.6 Combining systematic planning and minimalism  

Recalling Figure 2, it is the right-hand half of the octagon that emphasizes creative human activities, 

which often run optimally without any external instruction or requirement. Students frequently 

neglect teacher tutoring, or they feel they do not have time to learn how to use technical tools; 

similarly, teachers feel they do not have time to teach how these tools should be used. The term 

minimalist instruction (MI), introduced by Carroll [65] is crucial not only for teachers, but also for 

those who write manuals and help menus for software. Carroll observed that learners often avoid 

careful planning, resist detailed systems of instructional steps, tend to be subject to learning 

interference from similar tasks, and have difficulty recognizing, diagnosing, and recovering from 

their errors. The assumptions, characteristics, and methods of minimalism implemented here are 

opposite to those used by Gagné [70]. With a view to fostering problem-solving abilities, we have 

picked up some alternative characteristics of MI (cf. [71], [72]). These features of minimalism 

encompass several varieties of the constructivist view, and include certain assumptions about 
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effective instruction (cf. [73], [74]): 1) specific content and outcomes cannot be pre-specified, 

although a core knowledge domain may be specified; 2) learning is modelled and coached for students 

with unscripted teacher responses; (3) learning goals are determined from authentic tasks stressing 

doing and exploring; (4) errors are not avoided but are used for instruction; (5) learners construct 

multiple perspectives or solutions through discussion and collaboration; (6) learning focuses on the 

process of knowledge construction and development of reflexive awareness of that process; (7) 

criteria for success are the transfer of learning and a change in students’ action potential, and (8) the 

assessment is ongoing and based on learner needs [67]. 

The genesis of heuristic processes, and the ability of students to develop intuition and 

mathematical ideas within a constructivist or minimalist approach, is unlikely to be attainable without 

thorough planning of learning environments by the teacher. To this end, empirically tested and more 

or less systematic pedagogical models can be helpful. Kadijevich and Haapasalo [75] found that links 

between conceptual and procedural knowledge may be established by means of sophisticated 

conceptually-oriented technology-based environments. The example in Section 2.4 reinforces not 

only this but suggests that students are able to use the tool on the level of instrumentalisation. 
 

3. Empirical evidence from ClassPad 2 project 
 

3.1. Background  

The previously mentioned ClassPad project (see details [1]) was designed to investigate the kinds of 

opportunities the CAS technology might promote for seven challenges of instrumental orchestration 

within technology-based learning environments (Section 1.1). Therefore, SCL came under scrutiny 

more or less incidentally.   

In the ClassPad2 project, we orchestrated the learning of the core areas of 9th grade 

mathematics (i.e. linear functions and basic concepts of statistics) using the ClassPad calculator as 

the learning tool, without any textbooks or traditional homework (to be referred to later as 

instrumental orchestration). The learning tasks were designed within the quasi-systematic framework 

in Figure 4. The learning of linear functions consisted of nine 45-minute lessons. During the first 

lesson, the students formed teams and learned to use ClassPad. The focus was on changing 

representations between algebraic and geometric calculator windows by utilizing the principle of the 

simultaneous activation of conceptual and procedural knowledge (cf. portfolio sample in Figure 3). 

The learning tasks were designed within the quasi-systematic framework of Figure 4, whereby the 

links between verbal (V), symbolic (S), and graphic (G) representations are constructed at first on the 

level of identification, and then on the level production (P). However, the students had freedom to 

“jump the gun” by choosing from this so-called buffet any problem that they wanted [66]. To find 

empirical support for the characterization of SCLE, students’ working processes during ClassPad 2 

were looked from five points of view:  

(Q1) Can a quasi-systematic framework to link conceptual and procedural knowledge be used 

within a minimalist approach to instruction? 

(Q2) Which kinds of cognitive development can be found among students? 

(Q3) What influences did SCLE have on the students’ mathematical identity? 

(Q4) How did the students communicate in SCLE, and  

(Q5) How did the students experience SCLE? 

 

Data for Q1 were gathered from students’ lesson diaries (n=23), and Data for Q2 consist of linear 

equations pre-test, test, and post-test patterns [66]. These tests were designed according to the 

MODEM framework [78]. Data for Q3 were gathered from the whole group via a web-based 

questionnaire before and after the ClassPad project, and by interviewing students to gain more 

information beyond the shifts of students’ Identity- and Maths-profiles during the project. Data for 

Q4 were gathered from eight student discussions during the ClassPad 2 project lessons [76]. 
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Discussions were audio recorded and data were transcribed. Data for Q5 consists of students (n=23) 

wrote essays on their experiences. Data for Q1, Q3 and Q4 were analysed by using content analysis, 

Data for Q2 were analysed by quantitative methods and Data for Q5 were analysed by using the 

Grounded Theory method (see [1], [66], [76], [77]).  

 

3.2 Reported results 

Concerning the first research question (Q1), the results reveal that even though students proceeded 

more or less chaotically, it was found that learning to link conceptual and procedural knowledge can 

be planned within a quasi-systematic framework ([66], [1]). To “go for lines”, one student team, for 

example, initially selected a quite complicated problem on optimizing mobile phone costs, which was 

planned to be a reinforcement task. After realizing that the (partly linear) cost models appeared too 

difficult for them, they then chose a new, much easier, problem set. This happened to consist of 

Identification Tasks – the lowest level of understanding the links between representations (see Figure 

4). This example shows that a sophisticated interplay between a systematic and minimalist approach 

can be achieved even by simple pedagogical solutions. Note this important feature of Minimalism: 

The teacher did not want to regulate students’ work by recommending that they try an easier sub-

problem, for example. Instead, it was students’ internal motivation that regulated their task choice.  

The self-guided selection of problems from the buffet really varied among the students. Some 

students mentioned that they just randomly picked problems from the buffet, and some students 

carefully selected what kinds of problems they were able to solve. The problems should include a 

wide range of choices in terms of level of difficulty. Tasks that are too simple kill the joy of discovery 

for learners, and tasks that are too difficult are overly challenging. It seems that interplay between a 

systematic and minimalist approach can be achieved even by simple pedagogical solutions [76]. 

Eronen [1] (see p. 38 Figure 9) represents example of the path of a student team which did not utilize 

the MODEM framework in any optimal way. At first it went directly to the Production tasks and 

selected those tasks more or less randomly (as was the case within the other task types after that). The 

students evidently liked the amazing drag-and-drop function, which automatically performed the 

action from Symbolic to Graphic Form and vice versa.   

 

Which kinds of cognitive development can be found among students? 

To follow up on the students’ learning about linear functions (Q2), the students were tested three 

times by using MODEM 1 test patterns: before the project (pre-test), at the end of the project (test), 

and five months after the project (post-test) [66]. The Cronbach’s alpha, calculated from each test 

item showed a good reliability level in all three tests (see Table 1). After the working period, the 

students’ total scores in the test were significantly higher (p < 0.001, sign test) than in pre-test. 

Moreover, the students’ scores in the post-test showed that the student’s mastery of the concepts they 

had learned during the ClassPad project was still at a high level, as there was no significant difference 

(p<0.383) in the scores in the test and pre-test. The test results indicated that the students indeed 

learned the linear function concept during the ClassPad project [76].  
 

Table 1. Students’ (n=23) performance during the ClassPad project [76]. 

 Pre-test Test Post-test 
a) Average total test scores out of 60 

b) Cronbach’s alpha between test items 

during each test round 

c) samples between pre-test and test 

d) samples between test and post-test 

Avarage totala  

(Cronbach Alphab) 

16.5 

(0.889) 

42.4 

(0.786) 

39.4 

(0.884) 

The significance of sign 

test for two related  

 p<.001c p=.383d 

 

The results suggest that students learned the concept of a linear function, if “learning” is defined as 

in previous studies ([78], [79], [80], [81], [82], [83]). The positive results somewhat contradict the 
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results of [84] that minimally guided instruction is less effective and less efficient than other 

instructional approaches (cf. [85]). In this light, we wanted to extend the methodology to find out 

what had actually happened during the learning processes, and what might have contributed to the 

positive results.  
 

What influences did SCLE have on the students’ mathematical identity? 

The analysis of the Identity- and Maths-profiles (Q3) during ClassPad 2 project revealed huge 

differences in the profile shifts between the students [66]. The outcome suggests that the problem-

solving processes during the project influenced students’ Identity- and Maths-profiles. There is also 

a slight extending shift in the average profiles of the whole class. Eronen [1] (see p. 45 Figures 15 

and 16) illustrates an example how Identity-profiles and Maths-profiles (see Section 1.2) change 

when students work in pairs. In that example, a conceptually-oriented peer-teacher (i.e., wanted to 

know what steps she has to undertake) was teaching her procedurally-oriented classmate (i.e. 

uninterested in understanding what he was doing; see [86]. This kind of peer-teaching period quasi-

enriched the Maths-profile of the peer-teacher but undermined her mathematical self-confidence. 

Interestingly, the Identity-profiles of these two students seem to run in opposite directions. As the 

classmate begins to think (perhaps wrongly) that he can find, apply, and argue better than at the outset, 

his peer-teacher’s own self-confidence in making mathematics seems to deteriorate. As the peer-

teacher spent all her time in explanatory mode, this finding may indicate that a behaviourist approach 

to teaching can damage both student and teacher. In contrast, the teacher should be able to scaffold 

the learning process in the before-mentioned guidelines of SCL. This case might act as a warning 

against those who exaggerate the dominant role of emotional support and atmosphere (cf. [29]) 

because those two students were the best friends in the class. 

 

How did the students communicate in SCLE?  

The Data for Q4 were gathered from the eight student discussions during the project lessons. 

Discussions were audio recorded and data were transcribed. The audio data were analysed by 

classifying the major content of students’ speech in each recorded minute. By focusing on interplay 

between formal and informal school culture (cf. [31], [33]) five categories of speech were identified: 

formal discussion about the problems, formal discussion about the technology used, silence, informal 

conversation concerning other school subjects and general informal discussion (entertainment) (see 

[1]). Table 2 shows the breakdown of conversation between one pair of students, ‘John’ and ‘Sarah’, 

over the course of the nine lessons. The average amount of informal and formal discussion was the 

same, but there was significant variation in time spent in each category during course of the project.  

 

Table 2. Communication of two students, categorized by speech [77]. 
Categories (min) Informal entertainment Silence Formal discussion Total 

 General subject Regarding School   Regarding 
technology 

Regarding 
the problems 

 

John 79 66 66 32 101 344 

Sarah 77 58 46 26 137 344 

Total   41 % 16 % 43 % 100 % 

 

Figure 5 represents communication between two students (John and Sarah) during one lesson, being 

quite typical not only for these students but among the majority of the student pairs. The analysis 

revealed that the dominant category of communication was entertainment. This lesson was quite 

typical for students throughout the project. Both students went for Production tasks 1 to 4 during the 

first 19 minutes. This example demonstrates the significance of informal school when students work 

within SCLE, as well as the importance of storytelling and the potential of informal school culture 

activities as part of the learning process (cf. [33]). 
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Figure 5. A sample of communication flow among a student pair. [1]  

The communication between Sarah and John during the first six minutes concerned entertainment or 

their daily school activities. After that, both were silent for about one minute until Sarah started to 

communicate for three minutes for entertainment purposes. Figure 5 shows that the amount of 

discussion then decreased quite radically. We formed the view that this was caused by the difficulty 

of Production tasks that were not appropriate for this low-performing pair. The fact that after 23 

minutes John stayed with Production Task #7 whereas Sarah attempted tasks #5 and #7 also indicates 

poor collaboration. After that, the teacher took more than 10 minutes to explain how to utilize 

ClassPad’s eActivity, and the Drag-and-Drop properties of ClassPad. Students then selected 

Orientation Task #1 from the menu, and after that Identification Task IVS. However, the discussion 

kept returning to technological aspects or formal entertainment rather than mathematical content. The 

recording of this lesson (41 minutes) includes discussion of content (6 minutes), ClassPad (6 

minutes), and studies in general (6 minutes), with 3 minutes of silence. The dominant category of 

speech (21 minutes, more than 50% of the total) was entertainment.  

 

How did the students experience SCLE? 

Data for Q5 were analysed by using the Grounded Theory method [76]. Students (N=23) wrote essays 

on their experiences, to be analysed using the “bottom-up” methods of grounded theory as described 

by Glaser and Strauss [87] and Glaser [88] (which introduced a more flexible approach). Quite rich 

data were obtained from the students’ personal essays or reports, and three analytic steps were then 

followed. In the open coding phase, the data derived from the students’ writings were examined in 
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detail and coded for emerging concepts. During this open coding, concepts were identified. In the 

theoretical coding phase, the number of concepts was reduced and grouped into tentative categories. 

Patterns of students’ processes were identified in the data, and the emerging categories and their 

relationships were carefully compared to ensure that these categories covered most of the variation 

found in the data. We constructed a model describing the process of mastering doing and learning 

mathematics through acquiring expertise processes. The processes were iterative, and mastery of 

doing and/or learning was reached either with satisfaction or dissatisfaction. Two different learning 

profiles, one concluding with students feeling satisfied with their learning and the other concluding 

with students feeling unsatisfied illustrated the students’ typical processes. According to the model, 

the key elements for SCL are easy-to-use tools, shared understanding of the work style, and diverse 

tasks. In addition, students can set different goals for their mastery. Some students are satisfied with 

reaching the level of doing math, which might be a dissatisfying situation for a student who wants to 

learn mathematics (cf. [89]). 

 

4. Grounding SCL through the ClassPad project 
 

4.1 SCLE characterized by student’s experiences 

Recalling the SCLE, we begin with the fundamental questions 'Where do the learning tasks come 

from; who provides the motivation for doing them; which learning tools will be utilized; and who 

takes the control in the process?' Table 3 extends the discussion in Eronen & Kärnä [76] who 

describe the processes through which students acquire the expertise needed for mastering doing and 

learning mathematics 

 
Table 3. Categories and sub-categories in doing tasks (D) and learning mathematics (L) during 
mathematics lessons.   
 

 Mode of using the 

tool  (T) 

  Mode of working 

style (W) 

Content-     

orientation (C) 
 

Self-confidence 
 

 
D 

Using the tool within 

instrumentation 

Working properly Doing tasks on the 

content 

 

L 

Using the tool within 

Instrumentalisation 

Learning orientation   Motivation to learn 

the content 

 

Self-guidance 

 
D 

Self-guided using of 

the tool  

Self-guided working Self-guided 

task orientation 
 

L 
Self-guided learning 

with the tool 

Self- guided learning Self-guided learning 

orientation 
 

Minimal Instruction 
(MI) 

 

 
D 

Using the tool within MI 

 

Working within MI Task 

orientation 

within MI 
 

L 
Learning with the tool 

within MI 

Working within MI 

aiming to learn 

Learning the content 

within MI 

 
      Level of expertise 

 
 

 

D 

Shifting to 

instrumentalisation 
Expert-like working  

Expert-like 

investigation 

 

L 

Utilizing 

instrumentalisation for 

learning 

Expert-like learning 

strategies 

Expert-like problem 

solving  

 Level of satisfaction in 
management processes 
(positive P vs. negative) 

N) 

  D P/N P/N P/N 

L P/N P/N P/N 

 

The term “managing the learning” in a narrow behaviourist sense (cf. [70]) would mean that the 

teacher takes a full control of the learning process, giving out the tasks, showing how to solve them 
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and use the tool, whilst applying our terminology from Section 1.4. In an ideal constructivist SCLE, 

it would mean that the student is able to cope within MI in the current investigation space allowing 

him or her to construct links between conceptual and procedural knowledge via instrumentalisation, 

keeping in mind the ability to apply this knowledge. Along this whole scale there are numerous 

variations but regarding SCLE emphasized in this article, we henceforth speak simply about 

‘management of doing’ (MD) and ‘management of learning (ML)’, conducted by the student himself 

or herself. 

The learning processes during the lessons was a complicated process shaped by a combination 

of factors illustrated in Figure 6, being developed from the model of Eronen & Kärnä [76]. Applying 

the notations from Table 3, the causal factor for MD and ML is the students’ self-confidence to learn 

mathematics. The conditional factor is the students’ ability to work and learn self-guided and 

collaboratively, whilst the teacher’s Minimalist Instruction strategy can be interpreted as a covariance 

factor. The core element of the process is derivable from the question ‘Can the student use the tool at 

the level of instrumentalisation within the Z-activities when handling the current investigation space?  

This means expert-like working and thinking and hence refines the term “expert acquisition” used as 

a core element of MD and ML. Regarding technology-based environments, it could be replaced by 

the term ”sustainable heuristics and instrumentalisation”, for example. It must be understood in a 

constructivist sense as being far from an acquisition of objectivist knowledge from outside the learner. 

All four modes of the management outcome in Figure 9 also included the satisfaction–dissatisfaction 

dimension, i.e. how satisfied or dissatisfied the student felt with his or her management regarding the 

tool, working style, and content subcategories. 

 

 
 

Figure 6. Development of the management of doing (MD) and learning (ML) in SCLE regarding the 
sub-categories of Table 3.     

 

To give two examples, managing neither doing nor learning appeared typically in situations when the 

students stopped working. These situations became possible when the students had full autonomy to 

guide their own doing and learning. If the reason for entering this mode was due to personal or non-

content-related issues shared among the classmates, the satisfaction increased, whilst decreased if the 

problem-solving process was unsuccessful.  An opposite example comes from a student who had 

mathematical knowledge of the subject at the beginning of the learning period. This caused the 

outcome of ML without MD within a satisfaction mode. However, this kind of satisfaction decreased 

quickly as there was nothing to do or learn.  Figure 7 illustrates two commonly found management 

processes in more detail by using V- and L-profiles.  
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Figure 7. V-profile (bold arrows) and L-profile (thin arrows) for the learning management in 

SCLE (cf. [76]). 
 

The V profile represents the process of LM for most of the students (n=21). The expert acquisition 

of these students was successful, and they were satisfied with their performance in all three 

subcategories (tool, work style, and content). At the beginning (from stage 1 to stage 2), the students 

were excited about this way of learning mathematics, which was very different from regular lessons, 

as the students were asked to use a new tool, and to complete self-guided work. After the first few 

lessons, however, the satisfaction level of V-profile students collapsed, as they faced difficulties in 

managing the tool and work style that slowed down the process of solving the assigned mathematics 

problems. This satisfaction collapse is traced in the transition from stage 2 to stage 3. As the project 

continued, these students acquired greater expertise in the tool and subsequently in the work style. 

The expert acquisition in the mathematical content (i.e. assigned mathematics problems) proved to 

be more difficult, usually taking several lessons. At the stage when the V-profile students understood 

for the first time how they could self-guide to solve problems by using the tool, this expertise 

accelerated with increasing awareness of how to use the new tool and work style for learning 

mathematics, and they moved from stage 3 to stage 4. The final outcome of the process for the V-

profile students was that they managed their own doing and learning and felt satisfied.   

The learning process of two other students is described by the L-profile. These students 

managed their learning but were dissatisfied at the end of the project. At the outset, both were as 

excited as the V-profile students. However, as the project progressed, the L-profile students had 

difficulties in expert acquisition regarding at least one of the components tool, working style, and 

content orientation. Two of the students who liked to work alone succeeded with T and W but not in 

C. The first one reported that some of the tasks were easy to solve using the tool, whilst some were 

too difficult to solve alone. The other one reported that although she completed all the tasks, she 

learned almost nothing during the project because of the new work style. However, she also 

mentioned that she had learned the concept of slope, which was crucial in understanding the equation 

of a straight line. So, the outcome for these L-profile students was that they managed their learning 

while being dissatisfied. However, at the same time they were dissatisfied if their learning process 

because it was guided by unilateral cooperation with peers or the teacher (see (3) in Figure 10). It 

became evident that for these two students, completion of stage 4 processes would require effective 

collaborative problem solving.  
 

4.2. Conclusions   

We now summarize the main outcomes regarding the research question Q of this article. Firstly, the 

findings suggest that optimal ‘student-centred learning’ emphasizes students’ freedom to choose 

learning objectives and working methods in problem-based socio-constructivist technology-based 

environments, in which open questions about both mathematics and technology are solved in 

collaboration between students or student teams. Even though the students proceeded more or less 

chaotically, it was found that learning to link conceptual and procedural knowledge might be 

organized successfully within a quasi-systematic framework. Although the students were worried at 

the outset about not having a teacher controlling their learning processes, the majority of the students 
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(N = 21) realized by the end that self-guidance facilitated rather than inhibited their doing and learning 

mathematics (Figure 9). As Eronen & Kärnä [76] emphasize, the critical elements of the SCL must 

be captured and understood in order to take the interrelationship between affect and cognition into 

account and to maximize the benefits of learning situations for all learners. According to our findings, 

a successful learning process includes different modes, and it shifts between these modes. During the 

process, the learner faces satisfying and dissatisfying moments, which are crucial for gaining a 

thorough understanding of the task to be learned. The students felt their feelings of satisfaction were 

stronger than their feelings of dissatisfaction, particularly after the students had been dissatisfied 

during the problem-solving process, and had a positive impact on the students’ overall interest in 

doing and learning mathematics.   

Secondly, our study suggests that the factors in the position of Swan [27] represented in 

Section 1.1 may even cause a failure to achieve positive shifts in instructional paradigms, as referred 

to by Lea et al. [90] in relation to the differences between educators’ acts and thoughts. It might be 

appropriate to warn against over-romanticism regarding task-based classroom orchestration whereby 

the students are expected to learn mathematics just by finding answers to the tasks that the teacher 

has posed on specific and limited mathematical content in a well-defined closed form (cf. [50]). 

Dörner’s well-known problem typology [28] makes it possible to come up with dialectic problems 

that disarm the negative emotions caused by the demand for objectivity. A teacher who has experience 

in utilizing this approach notices that the students usually convert these open problems to 

interpolation problems and even complicated analysis-synthesis problems. This happened in our 

ClassPad project when the students were asked, for example, to find out how they think a technical 

tool could help to create a representation on the algebra window from geometrical representations, 

and vice versa. This did not only vitalize the Z-activities in Figure 1 but opened up the complexity of 

the on, with, in and between paradigms, allowing for movement into the first row of Table 3. Student 

teams could choose — and, indeed, create — any object they wished. In this way, mathematical 

problems were seen as becoming important when they were psychologically meaningful for the 

students, as Haapasalo and Samuels [51] discuss in relation to educational robotics. This may be one 

reason behind the positive development in students’ Maths-profiles and Identity-profiles. The study 

shows that autonomy and the opportunity to collaborate improves emotional climate, and also 

explains students’ improved cognitive development (cf. [30], [15], [16], [17], [18]). The influence of 

informal school culture therefore becomes apparent in SCLE.  

Thirdly, and particularly with the socio-constructivist paradigm in view (see Section 2.3), we 

now identify the SCLE by considering the following two crucial questions (cf. [91], [92]): (1) Who 

are the real actors in the learning process and what is the degree of collaboration? (2) Who are the 

primary decision makers in this process?  We considered these questions on four levels to cover the 

core of the SCL process (see Table 4). Modifying and extending the terminology of Neuman [2], we 

mean by the paradigm on that the teacher is the main decision maker and person in charge, whilst the 

paradigm with allows students to participate more or less in the discussion of learning goals, materials, 

tools and working methods. The paradigm in means those determinants are assigned to individual 

students or to happen in student teams. In ideal socio-constructivist collaboration, the learning 

happens in negotiations between student teams and therefore the power regarding those determinants 

shifts from the individual students to the student teams. We therefore extend Neuman’s [2] triple-step 

contexts by the paradigm between student teams. Table 4 illustrates one potential interpretation of 

this our categorization. A hypothetical example of interpreting the table is a student-oriented non-

cooperative learning process whereby the teacher makes the decision on the learning goals and 

materials, whilst makes the decisions about learning tools and the process management at least to 

some extent together with the students. As this cell is not highlighted, we do not consider it to be 

SCLE. 
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Table 4. Matrix of the requirements for the crucial determinants of the student-centered learning 

environments (SCLE) categorized by four main characteristics: (G) goal setting and commitment,  

(L) learning material, (T) learning tools and (M) responsibility of process management.    

 

 NON- 
COOPERATI

VE 

COOPERATI
VE 

COLLABORATI
ON 

INSIDE A TEAM 
 

COLLABORATI
ON 

BETWEEN TEA
MS 

 

STUDENT

-

CENTER

ED 

G: with/in 
L: with/in 
T: with/in 
M: in  

G: with/in  
L: with/in 
T: in 
M: in 

G: in 
L: in 
T: in 
M: in 

G: between 
L: between 
T: between 
M: between 

STUDENT

-

ORIENTE

D 

G: on 
L: on 
T: with 
M: with 

G: on/with 
L: on/with 
T: with/in 
M: in 

G: in 
L: with/in 
T: with/in 
M: in 

G: in/between 
L: in/between 
T: in/between  
M: in/between 

TEACHER

- 

CENTERE

D 

G: on 
L: on 
T: on 
M: on 

G: on 
L: on 
T: on/with 
M: on/with 

G: with/in  
L: with/in 
T: with/in 
M: with/in 

G: with/between 
L: with/between 
T: with/in  
M: with/in 

 

We feel the implications of this reappraisal to the whole school culture should be seriously considered. 

As the role of informal learning increases, not least because of progressive instrumental genesis, the 

learning focus could usefully be shifted from the classroom to students’ free time activities as 

Haapasalo and Zimmermann [93] suggest:  

which can stimulate modelling processes, for which school could take, referring to a car race, the 

role of a pit stop (to orchestrate technology-based investigation spaces which allow students to 

explore spontaneously the facility of real and virtual environments which are both, meaningful to 

them and their community, and which naturally motivate a greater use of mathematical language 

in its different forms.  
 

Our ongoing efforts to implement this pit stop culture in school and teacher education seem to be 

promising but difficult. With regard to the models developed through grounded theory, our further 

iterations of the ClassPad project focus on testing those models deductively in varied working 

environments, as well in schools and in teacher education.  
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